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Abstract  

It is shown that the validity of the principle of reciprocity for arbitrary motion implies 
that the rate of a moving clock departs from the (instantaneous) special relativistic value 
by a term - x f / 2 d  where x is the distance of the clock. Through this effect the cosmological 
red shift can be understood as arising from the outward acceleration of radiating atoms 
in galactic gravitational fields. In this way the relation (GM/2cL 2) ~ (l/H) between 
Newton's constant of gravitation G, the mass M and linear dimension L of a typical 
galaxy and Hubble's constant H is derived. This relation is verified by present-day 
observations. Implications of these considerations for quasars are briefly discussed. 

As a possible test of this theory it is suggested that the spectra of galaxies be searched 
for the presence of blue-shifted lines which are expected to be fainter by three to four mag- 
nitudes in comparison with the red-shifted lines. 

1. Introduction 

Some time ago we discussed (Khan,  1968) the problem of  non-uni form 
relative mot ion  between two elementary observers (monads). We envisaged 
the possibility that  under  certain circumstances a reciprocity principle may 
be valid for the space-time observations o f  each carried out  on the other. 
More  precisely, we postulated the existence, under special conditions, o f  
frames of  reference L and L '  fixed relative to the observers A and A' ,  
respectively, such that  the space-time observations on A carried out  in 
the frame of  reference L '  coincide with the observations on A'  carried out  
in L. Underlying this scheme of  ideas are the notions o f  ideal clocks and 
rods. Indeed one may  violate the principle by a bad choice o f  clocks and 
rods. This viewpoint  is completely opposed to the viewpoint  o f  Einstein's 
general relativity according to which all co-ordinate frames are equivalent 
and there are no ideal clocks and rods. As a justification o f  our  viewpoint 
we may  refer to the actual situation in experimental physics where one is 
certainly aware of  actual and possible clocks that  are truly fundamenta l  in 
the sense o f  simplicity o f  essential constitution. We have in mind the 
present-day cesium clocks and the clocks o f  no t  too  distant future based 
on the activation of  a submultiple generator  by means o f  the M~Sssbauer 
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radiation (Brillouin, 1970). Indeed the whole of experimental physics is 
motivated by the belief that there are certain ideal measuring devices which 
can in practice be realised to a n arbitrarily close approximation by the 
gradual perfection of experimental technique. Furthermore, a close analysis 
of the notion of an ideal clock from the point of view of an experimental 
physicist reveals that it leans heavily on the notion of an ideal rod. This is 
seen from the fact that recoil effects in an ideal clock associated with 
radiation emission or other modes of interaction have to be rectified by 
imbedding the clock in an ideal framework. In the case of M6ssbauer 
clocks, the ideal framework is realised by the crystalline lattice. It should 
be noted that we have carefully avoided the phrases 'rigid framework' and 
'rigid rod' which in ordinary language have different connotations. 

We have specified (Khan, 1968) the conditions under which the reciprocity 
principle may be expected to hold for the world pictures of the two 
observers. The conditions are just the absence of electromagnetic fields 
extraneous to the system of two elementary observers (particles). Any 
elec*romagnetic fields intrinsic to the system of two particles, however, 
are assumed not to affect the applicability of the reciprocity principle; nor 
does the presence of gravitational fields (extraneous or intrinsic) limit the 
application of the reciprocity principle in the form postulated above. In 
our thought experiment o f  two particles (unperturbed by extraneous 
electromagnetic fields) the relative motion is envisaged as arising from 
evolution in time of the electromagnetic field intrinsic to the system. The 
changing electromagnetic field not only produces the observed relative 
motion but is also supposed to interact with the ideal clocks and rods 
(considered as electromagnetic devices) carried by the two observers 
(particles) in such a way that the principle of reciprocity holds for the two 
world pictures. Thus, by invoking the principle of reciprocity for the system, 
we may forget about fields intrinsic to the system. They are there just to 
ensure the validity of the reciprocity principle for arbitrary motion in a 
self-consistent way. We may here draw an analogy with the situation in 
pre-special-relativistic physics highlighted by the work of Lorentz and 
Fitzgerald demonstrating the contraction of rods in the presence of 'ether 
drift'. With the advent of special relativity (which is equivalent to reciprocity 
for uniform relative motion) it was realised that the ether is a redundant 
concept and its role is merely to ensure the validity of special relativity for 
arbitrary uniform motions. Similarly, one may hope that if the programme 
of reciprocity could be carried through to a system of arbitrary number of 
particles, the concept of the electromagnetic field itself' would become 
redundant. However, at present great mathematical difficulties are being 
encountered in the fulfillment of such a programme and we shall not attempt 
to discuss the general many-particle system here. 

An important consequence of the reciprocity principle obtained in our 
paper is that the rate of a clock in accelerated motion deviates from the 
instantaneous (special) relativistic value by terms of order x~/c 2 where x 
is the distance of the clock from the point of observation. Now, for ordinary 
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the ground of our use of the notion of an ideal rod for which he has no 
sympathy, we shall present an exactly soluble motion in which we avoid 
using an a priori notion of length and work with time measurements only. 
This latter example, presented in Section 3, furthermore has the attractive 
continuity properties which are lacking in the first example. In Section 4 
we tackle the general two-particle system using a powerful technique 
suggested by the work of Jabotinsky and Liintz in the context of Abel's 
functional equation (Hadamard, 1944). The solution thus obtained is in 
the form of a power series. This method enables us to bypass the ambiguities 
of the calculus for general motions proposed in our earlier paper. 

2. A Thought Experiment 

Suppose a system of two particles (observers) A, A' is subject only to 
internal electromagnetic forces. According to the schemata described in 
the Introduction, the evolution in time of the electromagnetic field intrinsic 
to the system is reflected in the development of relative motion between 
the two particles and the behaviour of ideal clocks and rods carried by the 
observers consistent with the principle of reciprocity. Suppose now that A 
observes (in its frame of reference L) A' to move (radially) with uniform 
velocity vl up to a distance d where the velocity is suddenly changed to a 
new value vz (~  v 1)--this value being maintained in the subsequent motion. 
One may readily imagine such a change brought about by a change in the 
electromagnetic field of the system---e.g., emission of a photon by A' in 
the frame of reference L. From the principle of reciprocity, A' would also 
observe A to undergo the same motion in its frame of reference L'. If  for 
the moment we believe naively that at the instant of velocity transition of 
A' (in the frame L) the clock carried by A' records an instant and does not 
make a jump we are immediately led to the conclusion that A' observes A 
in its frame to move with uniform velocity v l up to a distance d~/[1 - (v12/c2)] 
where A performs a sudden jump to a distance d~/[1 - (vz2/cZ)] before 
resuming motion with uniform velocity vz. This motion is clearly very 
different from that of A' in L. Thus our naive assumption about the clock 
carried by A' not undergoing a sudden jump at the instant of velocity 
transition is in contradiction with the principle of reciprocity. Having 
demonstrated the necessity for the 'time jump' we shall calculate its 
magnitude. This can easily be done by noting that it must be such as just 
to allow observation in L' of the motion of A from a distance 

r = d~[1 - ( / 3 1 2 / r  

to r = d with uniform velocity v~ followed by the motion from r = d to 
r = d~/[1 - (vzZ/c2)] with uniform velocity v2. Thus it is compounded of a 
time interval 

- - c2} j  X o for 0 (2.1) 
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- ~ . .  ~0 forv, #0 (2.1) 
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followed by a time interval 

~[I- ;(I v22'~l - 7 ] j  X 0 for v2 ~ 0 (2.2) 

The total time interval is thus given by A { d / v ( x / [ 1  - (v2/c2)] - I)} where A 
defines the change in the a rgument  at the instant o f  velocity transition. 

We should like to remark  here that  the appearance o f  negative time 
intervals in the foregoing argument  does not  force us to a b a n d o n  the 
fundamenta l  requirement  o f  observers arranging events presented to their 
consciousness in an increasing time sequence. An  observer endowed with 
a human-l ike consciousness would simply ignore the negative time 
intervals. For  example, the mot ion  f rom a distance d ~ / [ 1 -  (T)12/r to 
r = d with uni form velocity W (> 0) followed by the mot ion  f rom r -- d to 
r ~  d ~ / [ ] -  (v22/r with uniform velocity vz  (> 0) encountered above 
would just appear  to such an observer as the mot ion  f rom a d i s t a n c e  
r = d ~ / [ 1 -  (v12/c2)] :to r ~  d with velocity Vl undergoing a change of  
velocity f rom v 1 to vz at r = d. I t  is now clear that  the two sets of  observations 
are completely identical in conformity  with the principle of  reciprocity and, 
in particular, the time jump  on the clock carried by A at the instant o f  
velocity transit ion in the frame L '  is also given by A { d / v ( 5 / [ 1  - (vZ/e2)] - 1)}. 
Thus  to calculate the rate difference (as seen by A or  A')  o f  the two clocks 
in uni form relative acceleration in the limit o f  zero relative velocity we have 
only to differentiate the expression in { } and take the limit v -> 0, i.e. the 
rate difference? 

= - 1  v= v21d) Jv 0=-2c 
I t  is precisely this expression for  the rate difference which gives the relation 
(1//7") N ( G M / 2 c L  2) between Newton ' s  constant  o f  gravitation, Hubble ' s  
constant,  the velocity o f  light and the characteristic ratio M / L  2 for galaxies.~ 

? This calculation of the rate difference is expected to be valid only in the limit v --~ 0 
for the case of uniform acceleration because we have derived the expression for the time 
jump A{(d/v)~/(1 - v2 /d )  - (dr)} under the assumption of instantaneous acceleration 
(sudden change of velocity). In Section 3, we have studied the case of uniform (quasi) 
acceleration and obtained independent confirmation of equation 2.3 (see equation 3,15). 

The relation ( I /H)~ (GM/2cL  2) is derived as follows. The light received from 
galaxies is predominantly from the parts facing us, which are in a state of acceleration 
G M / L  2 away from us. Using equation (2.3), 

d ! the redshift  -= . \ L2 ] 2c 2 

where d is the distance of a galaxy. Thus the Hubble constant Happearing in the empirical 
redshift distance relation (redshift = (d/eH))  is given by 

1 G M  
H 2eL 2 

Notice that we have assumed the galaxies at rest relative to one another. No ad  hoe 
hypothesis of expanding universe is needed to understand the cosmological reshift. 

25 
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Suppose now that in the above thought experiment v~ > 0, v2 < 0 so that 
the two observers meet again. Let us see what happens to the clock carried 
by A' from the point of view of observer A. If  the two clocks agree at the 
start of the outward journey then just before the instant of velocity transition 
the clock carried by A' would be lagging behind by d/vl{1 - x/[1 - (vl2/c2)]}. 
Just after the instant of velocity transition the clock would be leading by 

A { d [ J ( l - c ~ ) - l ] }  ~ [ l - J (  l-v~z'~]~]_] 

d 1 
- 7 1 -  J  v=IL 711" 

This is precisely equal to the time lag in the clock during the inward journey 
with uniform velocity Iv2 t. Thus the two clocks would agree on meeting 
again and the so-called twin paradox is non-existent. The non-existence of 
the twin paradox is not dependent on the peculiarities of the relative motion 
but is an essential feature of all relative motions consistent with the principle 
of reciprocity, as will become abundantly clear from consideration of the 
example discussed below. 

3. An Example of  Exactly Soluble Motion 

The discontinuous features present in the thought experiment described 
above, although not very serioas, are avoided in the following example. 
Furthermore, it is possible to avoid speaking of length measurements and 
work entirely in terms of time measurements with light signals as Synge1" 
would require. 

Suppose that in the thought experiment described above A' moves in 
the frame L according to the equation of motion 

d v 
dt ~/(1 - v 2) = a 

where v is the instantaneous velocity and a is a constant. Integration gives 

1 
x - - ~/[1 + (at + b) 2] + C (3.1) 

a 

where x is the distance of A' from the origin in L which can in principle be 
measured entirely in terms of time measurements with light signals. In 
equation (3.1), b, c are constants of integration. 

We may represent the observations of A in the frame L with the help of 
world lines drawn in the space-time of A, as shown in Fig. 1. These observa- 
tions are assumed to be carried out entirely by means of light signals and 
time measurements performed at A (see Fig. 1). Thus the time of the event 
P'  is t = �89 + t2) and its (radial) distance is x = �89 - tl) taking the velocity 

t See footnote, p. 385. 
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of  light equal  to unity. We have confined ourselves to the case of  relative 
mot ion  in one spatial  d imension as before. We should like to point  out  here 
tha t  there is nothing absolute  abou t  the space-t ime d iagram presented 
here in the sense that  it is not  necessarily the picture of  observat ions carried 
out  by A' in its own space time. The  picture in the space-t ime of  A'  is 
obta ined  by interchanging the labels A, A' in the figure. 

(A) 

(A') 

Figure ! .--Space-time picture in the frame L. 

Thus  we have 
! 

t2 = t -1- X - -  t q- ~ / [ l  .Jr (at + b)  2] + c (3.2) 
6/ 

I 
t~ = t - x -- t - - ~/[1 + (at + b) 2] - c (3.3) 

a 

Equat ions  (3.2) and  (3.3) determine t2 as a funct ion of  t~. Suppose  t' is 
the t ime recorded on the clock carried by A'  at the instant  when the light 
signal originat ing at  P arrives (at  t ime t in the f rame L). Our  p rob lem is to 
determine t' as a funct ion o f  t or, more  elegantly, as a funct ion of  ti. Let  
t '  = ~5(tl). F r o m  the principle o f  reciprocity t 2 = c~(t') SO that  tz = 4ff4~(tl)). 
Thus  the p rob lem reduces to that  o f  finding an iterate of  order  �89 for  the 
funct ion t2(t~) defined by equat ions (3,2) and (3.3). 

Define c~ so that  

Then 

1 + b  2 
( c -  ~,)~ a~ 

1 f + c - ~ - ( l / a )  V [ 1  + ( a l  + b ) q  

t~7~-c~  - -  2 [ c  - c~ - (b/a)] t ( 3 . 4 a )  
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so tha t  

i.e., 

1 t - ( c  - ~ )  + ( l / a )  V ' [ I  + (at  + b) z] 

tl +------~ = - 2 [ c  - ~ + (b/a)] t 
(3.4b) 

( c -  - ~ )  1 ( - c + ~  b 1 = 1  + 

(c - b) tl + a(2c - a) [c - (b/a)] tl + c 2 - I(1 + b2)/a 2] (3.5) 

tz = t l + c + (b/a) t l + c + (b/a) 

This is the so-called M~Sbius t ransformat ion .  A M6bius  t rans format ion  
has the interesting p roper ty  o f  preserving its character  under  iteration. 

Thus  to solve 
[c - (b/a)] ti + c z - [(1 + b2)/a ~] (3.6) 

qS(~(tl)) = tl + c + (b/a) 

we "~zy 

then 

qS(tl) p t i  + q (3.7) 
t l + r  

~(q~(tl)) p[ (p t l  + q ) / ( t ,  + r)] + q  
= [(ptl + q)/( t l  + r)] + r 

= ( p 2 + q ) t l + q ( p + r )  (3.8) 
(p  + r)  tl + q  + r z 

therefore 
pZ + q  b 

- c - - (3.9a) 
p + r  a 

1 + b  ~ 
q = c 2 a2 (3.9b) 

q + r  z b 
- e + - (3.9c) 

p + r  a 

which can be solved for  p, q, r. 
T o  show the non-existence of  the twin pa radox  we let c = - ~ / ( 1  + b2)/a 

so tha t  x = 0 when t = 0. Thus  equat ion (3.9b) gives q = 0. N o w  x = 0 also 
when t = - 2 b / a .  F o r  this value o f  t we have f rom equations (3.1) and (3.2) 

t i = t2 = - 2 b / a  and 

4 - - ( 2 b / a )  + r 

Since q vanishes equat ions (3.9a) and (3.9c) give 

pZ b r 2 b 
- c - -  - - c + -  

p + r  a '  p + r  a 
(3. 0) 
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so tha t  p - r = - 2 b / a ,  and we have 

i.e., the  two clocks would  agree when they meet  again.  
Let  us now calculate  the  rate  (R) of  the c lock a t tached  to A' when it is 

s t a t iona ry  in the f rame L. Clear ly  A '  has  zero veloci ty when t = - b / a  and  
its d is tance  f rom A is 1/a + c. 

R = d (t0_ _ _ p r -  q_ L 
dtl t=-~/~ (tl + r)Z[,l=-~/,- l / ,-c 

(3.12) 

where we have used the equa t ion  t~ = t - x. Hence,  

pr  - q (3.13) 
R = ( - (b /a )  - ( l / a )  - c + r)  2 

F r o m  equat ions  (3.9a), (3.9b) and (3.9c) we get two sets o f  values for  
p ,  q, r, viz. 

t b 
p = i - + e - -  

a a 

1 + b  2 
q = c 2 - - -  (3.14) a 2 

1 b 
r = •  

a a 

Thus  there seems to be an appa ren t  non-uniqueness  o f  the solution.  How-  
ever, this p r o b l e m  is easily sor ted  out  by  the physical  requ i rement  tha t  R be 
finite. This  picks out  the so lu t ion  with the lower sign and  we get 

R = �89 - ca) = 1 - �89 (3.15) 

where d = 1/a + c is the dis tance o f  the clock. The  te rm --~d. a is precisely 
the  t e rm -db /2c  z ob ta ined  in the thought  exper iment  o f  Sect ion 2 in the  
l imit  v ~ 0. N o t e  tha t  we have taken  the veloci ty o f  l ight c = 1 and  in our  
example  I) = a. 

4. Arbitrary Relative Motion in One Dimension 

W e  shall  now discuss a rb i t r a ry  relat ive mo t ion  in one dimension.  In  the 
t e rmino logy  o f  the d i ag ram in t roduced  in Section 3 let 

X =  a 0 + a I t q- a 2 t  2 + . . ,  

so tha t  
t2 = ao + (1 + a l )  t + a2 t 2 -t- a3 t 3 -t- . . .  (4.1) 

q = - a  0 + (1 - a l )  t - a2 t :  - a3 t 3 - - . , .  (4.2) 
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We should like to remark here that the condition (dx/dt) < 1 need not 
bother us at this stage. It can in principle be built into the theory through 
the formulation of a dynamical law of motion which turns out to be of 
teleological character in the sense that possible solutionS of equations of 
motion occur implicitly in the formulation of the equations (see Section 5B). 
At present we are interested in the purely kinematical aspects of the two- 
particle system. 

Equations (4.1) and (4.2) determine tz as a function of tl. Let t2 ~ x(tl). 
To determine the behaviour of the clock carried by A' let t' = ~(tl) so that 
from the principle of reciprocity tz = ~(t') and 

%(~(z)) : x(z) (4.3) 

Our problem then is the determination of ~ satisfying equation (4.3). We 
shall first reduce this problem to one capable of solution as power series 
in z. This is done with the help of the following lemma: 

Given 
4(~(z))  = x(z) 

define 

then 
2 ( z ) = x ( z + a ) - a  , ~ ( z ) = ~ ( z + a ) - a  

4(6(z ) )  = 2(z)  

The proof  of this is very straightforward. A general form of this lemma is 
stated in Appendix A. 

Now if we take a = ao in the abow: lemma, 2(z) is given by the parametric 
equations 

)~(Z) = (1 @ a l )  t @ a 2 t 2 q- a 3 t 3 + . . .  (4 .4)  

z =  (1 - a l )  t - - a z t  2 -  a3 t 3 - . . .  (4.5) 

The various steps involved in the solution of the problem thus become: 
(i) Finding the inverse function (iterate of order -1 )  of the function of t 
on the right-hand side of equation (4.5). The problem of iterates of arbitrary 
order is discussed below. (ii) Substituting the inverse function (obtained as 
a power series in z) in the right-hand side of equation (4.4) to obtain ,2(z) 
as a power series in z (with no constant term). (iii) Determining the iterate 
of order �89 of the function 2(z) obtained above as a power series in z. This 
gives us the function ~(z) satisfying ~(~(z)) = 2(z). (iv) The function d?(t) 
(describing the behaviour of the clock A' in the frame L) is evaluated using 
q~(t) = q~(t - a0) + a0. Thus in the above scheme a central role is played by 
the solution (in power series) of the general problem of iterates of arbitrary 
order for a function given as a power series (with no constant term). This 
solution will now be presented. Let us denote the iterate of order n of a 
function ~(z) by q~,(z) so that q~,+l(Z)= ~(q~,(z)). By induction we have 

~,(~m_,,(Z))=~m(Z ) (4,6) 
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We shall now let m, n become continuous variables. It can then be shown 
that equation (4.6) implies the following partial differential equation (see 
Appendix B): 

02 r a•.(x) 02 (~.(x) O•.(x) 0 (4.7) 
On 2 Ox On OX an 

The above equation gives the following integral: 

[Or 
[ar p(x) (4.8) 

where p(x) is an arbitrary function of x. 
Let 

r -- cdn)x + c2(n)x 2 + . . .  (4.9) 

p(X) = Pl .X q- p2 x2 "-}- p3 x3 q - . . .  (4.10) 

Then equation (4.8) gives 

cl'(n) = Pl cl(n) ) 
c2'(n) = 2pl c2(n) + P2 el(n) ) (4. l 1) 
c3'(n) = 3pl c3(n) + 202 c2(n) + P3 el(n) 
c4'(n) = 4pl e4(n) + 3Oz c3(n) + 203 c2(n) + P4 el(n) 

. . .  etc., 

where the prime denotes differentiation with regard to n. Thus the problem 
reduces to that of solving an infinite set of ordinary differential equations. 
The boundary condition ~0(x)= x gives cl(0)= 1, cd0)= 0 for i r  1. 
Using these we obtain 

c , (n)  = e o l .  

c2(n)  = p2 ( e 2 p , .  _ e~ '")  
Pl 

1 ( 2p2~e3pl.2 20Z2e2O~._ t~(p3 2pz2~ 
c3(n) = ~Pt  P3 q" -- _ et~,n Px / Pl 2 2Px -~-l! 

c4(n)=3@l (P4+4p2P3+Bp23~pl 7-12] e 4 o l n -  3/02 ( p 3 + 2 D 2 2 ]  e3pl" 
2,~ Pl ] 

( 1 7p203 + 3p~J] eO, . + (3p22--Ptp3)e2O'n--~p 1 P4- 2p----~ p, / 

. . .  etc. (4.12) 
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The constants P l, pz . . . .  can now be determined from the second boundary 
condition: ~z(x) = ~b(x) = a l x  + az x2 + a 3 x  3 + . . .  so that ck(1) = ak. Thus 

pl = log~ (al) 

a 2  log~ (al) 
P2 a l  2 - -  r 

2(a3 a j  - a2 2) 
log~ (al) t93 = alZ(al z - -  1) 

3a12(al + 1)a4 -- ala2 a3(Sal + 7) + a23(Sal + 4) 
P4 a13(al z - 1) (al 2 + a I + 1) log~ (al) 

. . .  etc. (4.13) 

The solution of our problem concerning the iterates of arbitrary order 
(n) of the function qS(x) (expressible as a power series in x with no constant 
term) is now complete. In particular the inverse function is obtained by 
setting n = -1 in the above solution, and the solution @) of 4J@(x)) = q~(x) 
is obtained by setting n = �89 

5. Discussion and R e m a r k s  

(A) Let us recapitulate the main results established so far. We have 
demonstrated that the rate of a clock depends on its acceleration and 
distance. The rate has been shown to depart from the instantaneous special 
relativistic value by terms of  order x 2 / c  2 where x is the distance of the clock 
from the point of observation. Such a term in the expression for the rate 
of  a clock has observable consequences in cosmological situations, viz., 
the so-called cosmological red-shift is claimed to be due to this effect. We 
have obtained in this manner the following relationship: 

G M  
2cL-- ~ ~ 1 / H  (5.1) 

where G is the newtonian constant of gravitation, M is the mass and L 
the linear dimension of a typical galaxy. Substituting the known values of 
M and L for the galaxy (Allen, 1963) into the expression on the left-hand 
side of equation (5.1), we get for the Hubble constant ( H )  the value 1016-10 i 8 
seconds. The uncertainty in the figure is due to the uncertainty in the 
effective linear dimension L of the galaxy. The value accepted at present 
of  the Hubble constant is (4.1 • 2) 1017 seconds (Sandage, 1958, 1968). 

As a test of this theory we suggest a search for possible blue-shifted lines 
in the spectra of galaxies. These blue-shifted lines are expected to be present 
in the light originating from those parts of the galaxies which are facing 
away from us. Due to the absorption caused by the intervening mass of 



THE PRINCIPLE OF RECIPROCITY 395 

galactic dust, the blue-shifted lines are expected to be fainter by three to 
four magnitudes in comparison with the red-shifted lines.t 

We have suggested that the anomalously large red shifts of the quasi- 
stellar objects is not due to their distances being very large, rather it is a 
consequence of the characteristic ratio M/L 2 for these objects being large 
in comparison with that for the ordinary galaxies. Thus the puzzle of 
extreme brightness of these objects is resolved. Recently Shapiro (Shapiro, 
1971) has presented some observations of relative motion between the two 
components of the quasi-stellar source 3C 279 which clearly show that the 
source cannot be at cosmological distances, for this would imply that the 
two components are flying apart at a velocity greater than the velocity of 
light[ 

(B) Finally, we should like to add some remarks concerning the formula- 
tion of possible dynamics in the present approach. We wish to emphasise 
here that the following remarks are of a purely tentative character. The 
possibility we suggest is the following. The appropriate forces in a two- 
particle system are to be determined self-consistently through a generalisa- 
tion of the newtonian equations of motion, viz., (d/dt)(mv/d?(t))= F(x) 
where ~(t) is the function describing the behaviour of the clock moving 
according to the law of motion following from the above differential 
equation. The clock function ~(t) can in principle be determined from the 
law of motion using the general method of Section 4. Thus we obtain a 
very complicated self-consistency condition on F(x) which has not yet 
been solved. 
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APPENDIX A 

The lemma quoted in the text is a special case of the following lemma. 
Given 

~.(z) = X(z) 
Define 

2(z) = ~b(x@_~(z)) ) and ~(z) = ~b(q~@_1(z)) ) 

~ In estimating effects of absorption by galactic dust we have used the semi-empirical 
relation 

~A map 
1.08Qt 

where Am is the extinction produced by a dust cloud of thickness t, a ~ 3 x 10 _5 cm 
p ~ 1 gm/c.c., Q ~ 1, ~ is the mean density of the cloud. (See Hodge, 1966.) 
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where ~b(z) is an arbitrary invertible function. Then it follows that 

~. (z )  = ~(z~ 

The proof  of this lemma is very straightforward for n integer. It is not 
very difficult either for n rational. For  arbitrary n the lemma then follows 
from suitable continuity requirements. 

Taking n = 2, ~b(z) = z - a so that ~b_l(z) = z + a we get the special case 
of the lemma used above. 

APPENDIX B 

Derivation of 

a 2 r  ar  a 2 r  ar  = 0 
On 2 OX 01l OX On 

In the following discussion we shall write ~,,(x) as ~(x, n) for the sake of 
notaZional convenience. Differentiation with regard to the first and second 
arguments of ~(x, n) will be denoted respectively as O~/Ou, Od?/Ov. 

Now 
r162 n), m - n) -- r  (B.1) 

Differentiating with regard to n, we have 

O(~(r n), m - n) Or n) 0r162  n), m - n) 
Ou On Ov : 0 (B.2) 

Differentiating (B,2) with regard to m, 

0 2 ~((~(x, n), m - n) Oq~(x, n) 0 2 ~(~(x ,  n), m - n) 
Ov Ou On Ov 2 = 0 (B.3) 

Differentiating (B.2) with regard to x, 

0 2 ~(~(x ,  n), m - n) O~(x, n) O(~(x, n) O~((~(x, n), m - n) 
Ou z On 0 ~ -  + Ou 

0 2 ~(x ,  n) 0 2 ~(~(x ,  n), m - n) 3~(x,  n) = 0 (B.4) 
3x  an Ou Ov Ox 

Differentiating (B.2) with regard to n, 

3 2 (~(c~(x, n), m - n) {O(~(x, n)~ 2 3 2 ~(d?(x, n), m - n) O(~(x, n) 

Obt 2 \ T ]  -- 01) OU On 

+ o4 (4 (x ,  n), m - n) 02 4(x ,  ~) _ 0 ~ 4 (~ (x ,  n), m - n) 04(x ,  n) 
3u On 2 Ou Ov On 

0 2 6 ( 6 ( x ,  n), m - n) = 0 (B.S) 
+ Ov 2 
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Using equation (B.3) the last two terms on the left-hand side of  equation 
(B.5) cancel and we get 

32 4(4~x, n), m - It) [a4{x,  Il)]2 32 ~ ( ~ x , . ) ,  m - . )  a~(x, n) 
au 2 \ - a n - n  - ]  - av au 01, 

+ 3c~(~(X, n), m -- n) 0 z q~(x, n) 
3u 01,2 = 0 (B.6) 

Multiplying equation (B.4) by (O~(x,n))/Oil, equation (B.6) by 
(aS(x, n))/3x and subtracting we get 

3u \ 3x On an al, 2 3x ] 

Dropping the factor (3}(q~(x, ii), m - Il))/3u which cannot vanish (for all m) 
for a non-trivial q~, we finally get 

32 4(x, n) O~(x, It) 32 (~(x, It) 3q~(x, n) = 0 
3X Oil 3n Oil 2 3X 
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